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Abstract
The atomic exchange–correlation (xc) potential with the correct −1/r

asymptotic behaviour constructed by Parr and Ghosh (Parr R G and Ghosh S K
1995 Phys. Rev. A 51 3564) is adapted here to study, within time density
functional theory, the linear response to external fields of (i) neutral and charged
sodium clusters, and (ii) doped clusters of the type NanPb (n = 4, 6, 16).
The resulting photoabsorption cross sections are compared to experimental
results, when available, and to results from previous calculations using local
and non-local xc functionals. The calculated static polarizabilities and plasmon
frequencies are closer to the experimental values than previous results.

1. Introduction

Reliable approximations to the exchange–correlation (xc) functional of density functional
theory (DFT) [1] are the keystone for the successful application of DFT to the study of
electronic systems. This statement is particularly obviously true when one uses the time-
dependent counterpart of DFT (TDDFT) [2, 3] to compute dynamic response properties of
finite electronic systems to external exciting fields. The more widely used xc potentials are
based on the local density approximation (LDA) [4]. A particularly attractive feature of this
approach is its low computational cost, which allows one to treat systems with a large number of
electrons. However, a deficiency of the LDA (and likewise of its spin-dependent incarnation [5],
LSDA; in the following, we shall drop the distinction) is that it includes a spurious interaction
of localized electrons with themselves. The reason for this effect is that the self-interaction
contained in the classical Coulomb energy, the Hartree term of the DFT Hamiltonian, is only
partially cancelled by the LDA xc energy. The LDA xc potential has the wrong asymptotic
behaviour for finite systems: for neutral systems it decreases exponentially at large distance
from nuclei, rather than showing the correct −1/r behaviour. This failure originates from the
LDA not obeying the so-called ‘ionization potential theorem’ [6]; that is, the LDA eigenvalue
of the highest occupied molecular orbital (HOMO) deviates considerably from the negative
of the ionization energy of the system. Another drawback of the erroneous asymptotic LDA

0953-8984/02/235795+18$30.00 © 2002 IOP Publishing Ltd Printed in the UK 5795

http://stacks.iop.org/cm/14/5795


5796 M B Torres and L C Balbás

xc potential, which is relevant for the purposes of the present paper, is that the calculated
static polarizabilities of metal clusters are about 20% lower than the experimental values [3],
although still higher than the classical predictions based on nearly free electrons confined
by infinite sharp boundaries [7]. Similarly, TDLDA predictions of the surface resonance
frequencies became red-shifted with respect to the classical Mie value [7], but are still blue-
shifted with respect to experiments. These errors in TDDFT predictions from using LDA can
be traced back to the incorrect long-range asymptotic behaviour of the xc potential, leading to
inaccuracies in the virtual orbitals and eigenvalues. In view of this, it is an obvious priority
to use a description for the valence electrons leading to single-electron removal energies and
excitation spectra more accurate than the LDA predictions [6].

Various efforts have been made to eliminate the self-interaction error in LDA and related
density functional schemes. For example, two decades ago, Perdew and Zunger [8] developed
methods for the self-interaction correction (SIC) of any energy density functional; correction
of the self-consistent one-electron potential follows naturally from the variational principle.
Well known outcomes of using SIC are the improvements of the total and xc energies of
atoms, accurate binding energies of negative ions, orbital eigenvalues that are close to electron
removal energies, improvements of the band gaps of solids, and, more relevant for the purposes
of this paper, SIC leads to the correct atomic long-range behaviour of the atomic potential,
∼−1/r , and the ground-state electronic density, ∼e−2ar (with a = (2I )1/2, where I is the first
ionization potential). A different approach for the xc density functional, which is free of self-
interaction and exhibits the asymptotic xc potential ∼−1/2r for neutral atoms and clusters, is
the weighted density approximation (WDA) [9]. In order to reproduce the −1/r asymptotic
behaviour of the exact xc potential, Przybylski and Borstel (PB) [10] introduced a further
approximation in the WDA. Aiming to calculate the static polarizability of sodium clusters
in the context of the so-called Sternheimer equation, Rubio et al [11] introduced an ad hoc
(WDA-PB) procedure, in which the virtues of both the original WDA and the PB approaches
are exploited simultaneously (see below—section 2—for details). The linear response of alkali
metal clusters was also obtained by implementing the WDA-PB procedure [12] into the usual
TDDFT code, which is a modification of the RPA one given by Bertsch [13]. The PB results
in these rather heuristic works are much closer to the experimental values than those obtained
using the LDA functional, as a consequence of the improved asymptotic behaviour of the
xc potential.

For metallic clusters, the LDA-SIC procedure has been used rather successfully to
describe ground-state properties, such as eigenvalues, electron affinities [14], and the static
polarizability, as well as the dynamical response properties [15]. The SIC prescription of
Perdew and Zunger [8] suffers from the formal difficulty that it leads to orbital-dependent
xc potentials and it requires orthogonalization of the spin orbitals at each step to achieve
self-consistency. Recent efforts to construct xc potentials which are free of self-interaction
effects [16–22] provide a promising alternative for TDDFT applications to the WDA and SIC
methods which are more demanding as regards computing requirements. Among the recently
constructed potentials, the one given by Parr and Ghosh (PG) [18] represents a more drastic
new view of xc effects, where the exchange and the correlation are not considered separately
using specific functionals.

In this paper we implement the PG potential in the usual TDDFT code to calculate the
electron structure of the ground state, the polarizabilities, and the optical responses of pure
and doped sodium clusters. We compare the closeness to experiments of our results for pure
sodium clusters with that of the results from recent calculations using two variants of simplified
SIC schemes (having in common with ours that they lead to a single non-orbital-dependent
xc potential):
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(1) the results of [23], using the xc potential of Politis et al [19], and
(2) the results of [24], using the method of Krieger, Li, and Iafrate (KLI) [16].

We will also compare our calculated values with those from WDA-PB [11, 12] and
SIC [15] types of calculation in order to show that using the PG potential leads to similar
improvements with respect to the LDA, but with a smaller computing effort and without
further approximations.

The layout of this paper is as follows. In section 2 we present a short description of the PG
approximation for the xc potential and we implement it to study the dynamical response within
TDDFT, discussing the differences from the LDA, SIC and PB implementations. In section 3
we present and discuss results for the ground-state properties and static polarizabilities of
neutral, anionic, and cationic sodium clusters. Section 4 is dedicated to a comparative study
of the photoabsorption cross sections of these neutral and charged clusters as described by the
present and other TDDFT implementations [12,15,22,23]. The ground state and the response
properties of doped NanPb (n = 4, 6, 16) clusters are studied in section 5, assuming the ionic
structure provided by previous calculations [25]. In section 6, a summary is given and future
work addressed.

2. Theory

2.1. The Parr and Ghosh approximation

Within standard DFT, the density of an N -electron system n(r) in its ground state is given by

n(r) =
N∑

i=1

|ψi(r)|2 (1)

where the single-electron orbitals ψi(r) are obtained from solving the Kohn–Sham (KS)
equations (Hartree atomic units will be used unless explicitly indicated):

[− 1
2∇2 + Veff (r)]ψi(r) = εiψi(r). (2)

The effective potential Veff

Veff (r) = Vi(r) + VH(r) + Vxc(r) (3)

is the sum of the ionic, Vi(r), electron–electron (Hartree), VH(r) = ∫
dr′ n(r′)/|r − r′|,

and xc contributions, Vxc(r) (which contains all the many-electron effects missing in VH(r)).
The xc potential is determined as Vxc(r) = δExc[n]/δn after some approximation is assumed
for the xc energy functional, Exc[n], a key ingredient—but unknown—of the DFT. The most
widespread approximation to Exc[n] is the one provided by the LDA:

ELDA
xc [n(r)] =

∫
εhom
xc (n(r)) d3r (4)

where εhom
xc (n(r)) is the xc energy density of a homogeneous electron gas of density n(r), so

the xc potential at r in the LDA is given by

V LDA
xc [n(r)] = δεhom

xc (n(r))

δn(r′)

∣∣∣∣
n(r)=n(r′)

. (5)

Explicit expressions for εhom
xc (n(r)) can be found in the literature [1]. In this paper we will

use the one given by Perdew and Wang [26] and we refer to it as the LDA-PW expression.
Although there is ample evidence that LDA is accurate enough for many practical purposes
in atomic, molecular, and solid-state calculations, there are problems in which the LDA is not
good enough [8, 27]. The LDA can be improved mainly in two respects:
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(1) by constructing functionals that not only depend on the local density n(r) at point r, but
also depend on the gradients of the density, which leads to the concept of the generalized
gradient approximation (GGA) [27];

(2) by explicitly removing the self-interaction error mentioned in section 1 above.

The LDA xc potential, V LDA
xc , as well as most of the popular GGA potentials, fall off too steeply

for large r , compared to the exact xc potential which falls off as −1/r for neutral systems [1].
The PG approximation to the xc potential [18] was first constructed for atoms with the

aim of removing some deficiencies of the LDA, and is based on a series of seminal papers by
Zhao, Morrison, and Parr (ZMP) [28]. These authors have shown how to calculate KS kinetic
energies and orbitals, as well as DFT orbital energies, and xc potentials, V ZMP

xc [n], starting
from accurate ground-state electron densities. They have also shown how to obtain xc energies
when exact total energies are known, and that the accurate xc energy functional cannot be local.
The scheme used to construct V ZMP

xc [n] is based on the Levy constrained-search method [1].
An important conclusion of the analysis of V ZMP

xc [n] by PG is that it may be as well to eschew
the traditional resolution of the xc potential into exchange plus correlation, in favour of a
resolution into two terms:

V ZMP
xc [n] = V FA

xc [n] + VC[n], (6)

both of which contribute many-body corrections to the Hartree electrostatic potential, VH [n].
The first term in equation (6) is the SIC to VH introduced by Fermi and Amaldi (FA) in
1934 [29]:

V FA
xc [n] = −(1/N)VH [n] (7)

with N (a parameter, not a functional) being the number of electrons. The FA term ensures that
the xc hole correctly normalizes to −1 electrons, a very important condition fulfilled by the
LDA and WDA approaches, and guarantees the correct long-range behaviour of the potential,
in a natural way [29]. This is a significant improvement over the exponential decay of the LDA.
The second term in equation (6), VC[n], arises from the special constraint used in the ZMP
method to minimize the kinetic energy and has been called the constraint potential. As stated
above, one can compute accurate xc potentials from accurate electron densities following the
ZMP procedure [28], and, by subtracting V FA

xc [n], the constraint potential VC[n] is obtained.
From examination of accurate actual curves of VC(r) for neutral atoms, PG [18] have

observed that VC(r) and r2n(r) show complementary shell structures: a minimum in VC(r)

tends to correspond to a maximum in r2n(r). This prompts the hope that the quantity n(r)VC(r)

would be simply related to n(r), by means of a universal functional

�(R) = R(n)
VC(r)

VC(0)
(8)

with

R[n] = n(r)/n(0). (9)

From a plot of �(R) versus R for the atoms He to Ar, PG (figure 1 of [18]) conclude that �(R)

is a ‘nearly’ universal function of R, and provide the following expression for �(R):

�(R) = [kR − 1 + exp(−kR)]

[k − 1 + exp(−k)]
(10)

that fits the accurate existing data for the atoms He to Ar with the value of the parameter
k = 7.5.

In this paper we will denote the constraint potential VC[n] entering equation (8) as the PG
xc term, which leads to

V PG
xc = VC(0)�(R)/R[n] (11)
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and is determined, up to a constant VC(0), as a function of the density n(r). When added to the
FA component, it results in a particular construction of the ZMP xc potential that we denote
as the Fermi–Amaldi–Parr–Ghosh (FAPG) xc potential:

V FAPG
xc [n] = V FA

xc + V PG
xc . (12)

Our goal in this paper is to apply this potential to the study of static and dynamical properties of
metal clusters by self-consistently solving the associated KS and TDDFT equations. The results
will be compared with those arising from LDA and beyond-LDA types of calculation. To this
end, we choose to fit VC(0) of equation (11) in such a way that V FAPG

xc (r = 0) = V LDA
xc (r = 0)

for each one of the clusters we are dealing with. This allows us to scrutinize the effect of the
long-range xc interaction on the optical properties of clusters at low excitation energies, a
region where the FAPG and LDA potentials are radically different.

While the variational Vxc in the KS equations is equal to δExc[n]/δn, knowledge of V FAPG
xc

is not sufficient for accurately determining the xc energy, Exc, and the total energy. According
to equation (12) we would have

EFAPG
xc [n] = − 1

N
EH + EPG

xc [n], (13)

EH being the Hartree energy, and where δEPG
xc [n]/δn = V PG

xc . Although a formally exact
expression has been given by PG for EPG

xc in [18], the same authors have demonstrated [18]
that an excellent approximation for practical purposes results if one assumes that EPG

xc [n] is a
homogeneous functional of degree 1. The result is then

EFAPG
xc [n] = − 1

N
EH + 〈n|V PG

xc 〉 (14)

and the approximate total energy becomes

E =
∑

i

εi − (1 − 1/N)EH (15)

where the εi are the KS orbital energies.
For the purposes of the present work, the ionic structure optimization is not intended and

the xc energy functional is not needed. Rather, it is important to describe well the ground-state
electronic density profile and the corresponding structure of single-particle levels. Also we
need the functional derivative of Vxc with respect to density, which is crucial in TDDFT for
calculating the dynamical response function. As for the ionic potential of the KS equations,
Vi(r) in the effective potential of equation (3), we have employed two different models,
one for pure sodium clusters and the other for doped NanPb clusters. For Nan clusters we
use the spherical jellium approximation, in which a homogeneous spherical background of
positive charge plus a distribution of valence electrons describes a metallic cluster. For the
ionic potential of NanPb clusters we use the spherically averaged pseudopotential (SAPS)
model [30], within the local atomic pseudopotentials of Fiolhais et al [31], because this model
reproduces well [25] the trends for the observed stability [32] and the main geometrical and
electronic features of the first-principles calculations [33] for these clusters. Thus, the FAPG
potential can be used to describe accurately the electronic xc effects independently of the
underlying ionic model—that is, the jellium model or the local pseudopotentials, where the
atomic cores are taken into account. In this paper we compare the new FAPG potential versus
other electronic xc approaches using the same description of the ionic distribution. In other
works [12, 25, 30] the effects of different ionic descriptions on the electronic properties when
the same xc potential is employed have been discussed. The same trends for the changes in
going from jellium to ionic pseudopotentials as were found previously are expected to occur
when the FAPG potential is used, and only small details, not the main features and peaks,
should be modified.
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2.2. Dynamical response

The fundamental ingredient for the calculation of the response properties of electronic systems
in the TDDFT is the response function χ(r, r′) [2,3]. When the system is under the influence
of an external applied field of the following multipolar form:

Vext (r, ω) = V L
ext (r)Y

0
L(r̂)e−iωt , (16)

the response function χ(r, r′) is obtained from a Dyson-type integral equation:

χ = χ0 + χ0Kχ (17)

where χ0 in the independent-particle response function, and the kernel K is given by adding
the functional derivatives of the Hartree and the xc potentials with respect to density:

K(r, r′) = 1

|r − r′| + Kxc(r, r′); (18)

that is, respectively, the Coulomb term and the, so-called, local field correction, Kxc(r, r′),
No dependence of K on the frequency ω of the external field is assumed. The independent-

particle susceptibility χ0 is constructed via the eigenvalues εi , the wavefunctions ψi(r), and
the retarded one-electron Green functions G corresponding to the self-consistent effective
potential of the ground-state density functional calculation:

χ0(r, r′, ω) =
occ∑
i=1

{ψ∗
i (r)ψi(r

′)G(r, r′, εi + ω) + ψi(r)ψ∗
i (r′)G∗(r, r′, εi − ω)}. (19)

The dynamical 2L-polar polarizability αL(ω) results from the response function through the
relation

αL(ω) =
∫

V ∗
ext (r, ω)χ(r, r′, ω)Vext (r

′, ω) dr dr′. (20)

We will deal in this work with the dipole case L = 1, and the corresponding subscript will be
dropped. The value of α1(ω) for a static field, ω = 0, gives the static dipole polarizability, α(0),
which will be considered in section 3 below. On the other hand, the dipole photoabsorption
cross section σ(ω) can be obtained from α(ω) using Fermi’s golden rule:

σ(ω) = 4πω

c
Im α(ω) (21)

and will be calculated for pure and doped sodium clusters in section 4.
The LDA results in sections 3 and 4 below have been obtained by first calculating the

LDA for independent-particle susceptibility χLDA
0 and the local field correction, KLDA

xc , then
integrating equation (17) to obtain χLDA, and finally αLDA(ω) from equation (20). A similar
procedure leads to αFAPG(ω). The FAPG kernel is calculated in this work from the FAPG
potential as

KFAPG
xc = ∂V FAPG

xc [n(r)]

∂n(r ′)
(22)

which is a non-diagonal symmetric matrix in the coordinates r, r′, as it should be.
We comment now on previous attempts to include the correct long-range behaviour of

the xc potential and the corresponding kernel (local field correction) in TDDFT response
calculations. The independent-particle susceptibility was obtained by Pacheco and Ekardt [15]
using SIC corrections, and then the screening potential effects contained in the kernel K were
considered in two ways:
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(1) neglecting SIC, which leads to a diagonal matrix like in the LDA case; and
(2) considering also the orbital-dependent SIC potentials, that is, the full SIC-TDDFT with

the correct KSIC kernel.

In other work, Saito et al [34] attempted to introduce SIC corrections into the kernel by means
of an ad hoc Amaldi-type correction, namely

K(r, r′) = N − 1

N
KLDA(r, r′) (23)

where N is the number of electrons and KLDA is the kernel of the LDA:

KLDA(r, r′) = 1

|r − r′| +
dV LDA

xc

dn
δ(r, r′). (24)

We refer the reader to the original paper [34] for details. On the other hand, starting with the
PB non-local xc potential, there results a kernel KPB which is not a symmetric matrix [11],
unlike the exact Kxc(r, r′), which must be symmetric. For this reason, in previous works [12]
a mixed ad hoc WDA-PB procedure was used. In that approach, χ0 is first constructed from
the one-electron eigenvalues, wavefunctions, and retarded Green functions corresponding to
the effective PB potential, which shows the correct asymptotic behaviour; in a second step, the
screened response χ is obtained from equation (17) using the kernel of the WDA, KWDA

xc , which
displays the correct symmetrical behaviour. In contrast of this, the use for TDLDA response
calculations of V FAPG

xc will be consistent throughout this paper, in the sense that KFAPG
xc

is constructed from V FAPG
xc . These facts—the correct asymptotic behaviour of V FAPG

xc and
the corresponding symmetrical non-local kernal—modify substantially the structure of the
response function χ(r, r ′), yielding improved static polarizabilities and photoabsorption cross
sections with respect to previous calculations, as we show below.

3. Ground-state properties and static polarizabilities of alkali metal clusters

We consider first the electronic ground state of some neutral (Na8, Na20, Na40) and charged
(Na+

9, Na+
21, Na−

19) closed-shell sodium clusters. As long as our goal is a systematic comparison
of the electronic properties using various xc functionals, we treat the ionic skeleton in the
simplest possible way, that is, as jellium spheres with a sharp surface at radius R = rsN

1/3,
taking the value of rs = 3.93 a0 (the radius per electron of bulk sodium).

In this section we will see that, due to the improvement of the asymptotic behaviour of
V FAPG

xc , the FAPG electronic ground state shows a different energy level structure as compared
to the LDA one. Not only are the eigenstates more tightly bound, but also the grouping and
ordering of levels become modified with respect to LDA. There are a higher number of bound
states, and the gap between the HOMO eigenvalue and the lowest unoccupied molecular
orbital (LUMO) becomes wider. These effects lead to higher static dipole polarizabilities
and to smaller plasmon resonance frequencies, together with increasing fragmentation of the
plasmon, as we will discuss in section 4.

A first insight is gained by directly comparing the behaviour at different distances from
the centre of the cluster of the various xc potentials. In figure 1 we plot the KS potentials and
self-consistent densities of Na20 obtained in this work for two cases, the LDA-PW potential
of Perdew and Wang [26], which falls off exponentially as r → ∞, and the FAPG potential,
which behaves as −1/r for large r . Also shown are the two components of the FAPG potential,
namely the FA term, V FA

xc , which reproduces the correct asymptotic behaviour, and the short-
ranged PG component, V PG

xc , reflecting the shell structure of the system. The FA term’s
main function is to subtract out the self-repulsion in the Hartree potential, VH , while the PG
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Figure 1. Self-consistent electron densities and KS potentials of Na20 in the spherical jellium model,
calculated with the LDA (dot–dashed) and FAPG (dotted) approximations. The two components
of the FAPG potential are also shown: FA (dashed) and PG (dash–dot–dot).

component is representing correlation plus the interorbital exchange. Note in the inset of
figure 1 that the FAPG density is larger than the LDA one from the edge of jellium sphere,
rjell = 10.667–37 au; that is, the electron spill-out is larger for the FAPG potential than for the
LDA. For r > 37 au we have the asymptotic regime where the density decays exponentially
as ∼e−2ar with a = (2εHOMO)1/2; that is, εFAPG

HOMO > εLDA
HOMO .

An important consequence is the difference in magnitude between the HOMO eigenvalues
obtained in these two approaches. In table 1 we give the ratios of the negatives of the HOMO
eigenvalues, calculated using the LDA-PW, FAPG, and PB xc potentials, to the experimental
ionization potentials [35, 36], for neutral clusters with 8, 20, and 40 valence electrons. These
ratios are closer to unity, the value that exact DFT asserts [6], for the asymptotically correct
FAPG and PB potentials than for the LDA one, which severely underestimates the ionization
potential.

The orbital energy eigenvalues are a sensitive indicator of the differences between various
xc functionals. The different KS eigenvalues and eigenvalue differences resulting from
different calculations will drastically affect the linear response of the clusters in the optical
region; see section 4 below. It is customary in the vast literature involving LDA calculations
to compare orbital eigenvalues with experimental binding energies [37]. For example, in an
earlier work using the PB approximation [38], there was a comparison of the eigenvalues of
the occupied orbitals with experimental removal energies for noble-gas atoms, which obtained
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Table 1. The ratios of the negatives of the HOMO eigenvalues to the experimental ionization
potentials for sodium clusters, using different xc potentials. The PB results are taken from [11,12].
The experimental ionization potentials, Iexp , taken from [35, 36] are (in eV) 4.22, 3.76, and 3.58
for the 8-, 20-, and 40-atom clusters.

No of atoms+/− 8 20 40

LDA 0.77 0.73 0.76
FAPG 0.92 0.94 0.95
PB 0.96 0.99 1.04

Table 2. Comparison of the KS eigenvalues of the occupied orbitals for a jellium-like Na20
cluster obtained with different xc potentials: LDA-PW and FAPG: this work; PB: from [39]; GW :
from [40].

Orbital LDA-PW FAPG PB GW

1s −5.1 −5.9 −5.8 −5.8
1p −4.4 −5.2 −5.2 −5.2
1d −3.4 −4.2 −4.2 −4.4
2s −2.7 −3.6 −3.7 −3.8

Table 3. The KS eigenvalues (in eV) of the occupied orbitals for the Na8 cluster in the jellium
model, calculated by using different xc approximations: LDA-PW and FAPG: this work; BLYP,
KLI, and GAM: from [23]; PB: from [39].

LDA-PW BLYP FAPG PB KLI GAM

1s −4.53 −4.62 −5.19 −5.30 −5.66 −5.90
1p −3.27 −3.44 −3.88 −4.04 −4.39 −4.59

excellent agreement. In table 2 we compare the eigenvalues obtained using the LDA and the
FAPG potentials for a Na20 cluster with the PB eigenvalues [39] and the GW quasi-particle
energies obtained in [40]. We see that the xc potentials, FAPG and PB, lead to eigenvalues
very close to the GW energies.

Similarly, in table 3 we compare our results for LDA-PW and FAPG 1s and 1p
eigenvalues of Na8 with those resulting from the asymptotically correct xc potentials (KLI [16],
GAM [19,23], and PB [39]), and from the gradient corrected xc potential BLYP [27]. Gradient
corrections have a much smaller effect on the orbital eigenvalues than the other non-local
approaches. It turns out that the FAPG and PB eigenvalues shift down by ∼0.6 and ∼0.8 eV,
respectively, compared to the LDA, whereas the KLI and GAM eigenvalues are much more
bound, leading to a negative of the 1p eigenvalue for Na8 which is much larger than the
experimental ionization potential, Iexp = 4.22 eV. The relative difference in downshift between
the individual non-local approximations can be related to the corresponding differences in the
xc potential inside the cluster. Thus one finds that the GAM potential is considerably deeper
than the LDA one at the centre of the cluster, as can be seen in the figure 1 of [23]. This
prompts our selection of the constant VC in equation (11).

In table 4 we compare, for neutral and charged clusters with 8, 20, and 40 valence electrons,
the static polarizabilities calculated with different xc potentials to the experimental values. The
static polarizabilities in table 4 are given in units of the classical Mie polarizability, αMie = R3,
where R is the cluster radius, R = rSN

1/3, with N = number of atoms, and rS = 3.93 a0 is
the radius per electron of bulk sodium. The FAPG results as well as the WDA and SIC ones
show a systematic improvement with respect to the LDA. This improvement is mainly due to
a better description of the external part of the induced density. The WDA-PB and full-SIC
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Table 4. The static polarizability in units of the classical Mie polarizability, αMie = rSN1/3, for
neutral and charged sodium clusters with N = 8, 20, and 40 valence electrons. LDA-PW and
FAPG: this work; PB: from [39]; SIC: from [15]; ‘Exp.’: experimental values.

No of atoms+/− 8 20 40 9+ 19− 21+

LDA-PW 1.16 1.15 1.04 1.01 1.31 1.08
FAPG 1.58 1.40 1.30 1.26 1.73 1.27
WDA 1.49 1.42 1.37 1.27 1.72 1.29
WDA-PB 1.81 1.63 1.53 1.48 1.99 1.44
SIC 1.57 1.46 1.41 1.31 1.80 1.33
Full-SIC 1.70 1.61 1.51 1.46 1.80 1.45
Exp.a 1.72 1.58 1.56
Exp.b 1.86 1.77 1.55

a Reference [41].
b Reference [42].

calculations yield polarizabilities closer to experimental values. Since all calculations reported
in table 4 have been performed within the spherical jellium background model, at least a part
of the remaining discrepancy with respect to experiment can be ascribed to geometric effects.
For a recent discussion of the Na8 case (and smaller sodium and lithium clusters), see [22].

We are not aware of any experimental determination of the static polarizability for
negatively charged clusters, but we can see a systematic enhancement of the FAPG
polarizability with respect to the LDA, similar to the findings of other non-local approaches. We
would like to point out that, for each group of clusters with a given number of valence electrons,
the polarizability is smallest for the cations. This is qualitatively understood in terms of the
net confining force with which the ionic background attracts the valence electrons. Because
this force is largest in the cations, the electronic density is the more localized, leading to the
smallest polarizability.

4. Photoabsorption cross sections of neutral and charged sodium clusters

Recently we have extended the TDLDA framework to study the linear response to spin-
dependent external fields and we have applied it to sodium clusters [43]. Here we restricted
ourselves to the case of spin-independent fields, but we go beyond the LDA by using the FAPG
xc potential and the corresponding non-local xc kernel, equation (22). In figure 2 we show
a comparison of the linear TDDFT response to light of interacting valence electrons of Na20

and Na40 clusters calculated within the LDA-PW (upper panels) and FAPG (lower panels)
xc approaches. The dotted lines represent the results for the independent-particle unscreened
response and dot–dashed lines correspond to the full response of interacting electrons. The
peaks are not delta functions, because we have used a complex photon energy ω + iε with
ε = 0.02 eV. The vertical arrow indicates for each case the position of the HOMO eigenvalue
in the one-electron spectra.

The multipeaked structure below the ionization threshold appearing in the FAPG response
is similar to the one obtained previously within the WDA-PB xc approximation [12]. This
increase of strength in the ultra-violet (UV) region is due to the coupling of the collective
surface plasmon with one-electron excitations to the loosely bound Rydberg states, which are
now properly incorporated in the FAPG spectra. The increase of bound levels in the FAPG with
respect to LDA can be seen in figure 2 by simple inspection of the non-interacting spectra,
which are composed of simple poles at the electron–hole excitation energies. The strong
fragmentation of the FAPG response indicates that no particular transition dominates over the
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Figure 2. The imaginary part of the dynamical polarizability per electron (on a logarithmic scale
and in arbitrary units) for Na20 and Na40, versus excitation energy (in eV). The arrow indicates the
HOMO eigenvalue. A complex photon energy ω + iε with ε = 0.02 eV has been used.

others, implying a reduction of the total strength in the visible region, which occurs without
any significant change in the fragmentation pattern of the collective mode.

A direct comparison of the photoabsorption cross section calculated in the present work
with the line shape and linewidth observed experimentally is not appropriate, because of the
existence of relaxation mechanisms of plasmon resonance not accounted for at any level of
the linear response formalisms considered here. These relaxation mechanisms are responsible
for the lifetime of the plasmon, as well as a sizable linewidth associated with the geometry of
the ions. The effect of these additional mechanisms can be simulated, in an average way, by
folding the calculated cross sections with normalized Lorentzian functions, including damping
ratios. Using a Lorentzian width of 0.2 eV (ten times larger than the one used in figure 2) we
have obtained two broad peaks (figure 3) which are red-shifted in going from the LDA-PW to
the FAPG potential, giving a better agreement with the experimental positions [41], at 2.46 and
2.74 eV for Na20 and 2.40 and 2.65 eV for Na40. This qualitative behaviour is the one expected
from the results of table 4; that is, the higher the static polarizability, the lower the plasmon
frequency. Thus, the FAPG potential leads to an improvement over the LDA predictions of the
photoabsorption spectra of sodium clusters. We expect the small shift of the plasmon lines with
respect to the experimental observations to be correctable by considering the ionic distribution
of the clusters (see [22] for further details).
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Figure 3. Dipolar responses to light of Na20 and Na40 clusters calculated within FAPG and LDA
descriptions of xc effects. A Lorentzian width of 0.2 eV (ten times larger than in figure 2) is used.
Observed peaks are indicated with vertical arrows.

The mechanism of the fragmentation of the plasmon line is not correctly described by
the LDA. As an example, in Na20 it occurs due to the proximity of the plasmon peak to the
particle–hole transition 2s–3p at 2.8 eV. As the 3p level is practically degenerate with the
vacuum level, the fragmentation line is broadened due to the proximity of transitions from the
2s level to scattering states. However, the experimental ionization threshold is 3.76 eV (see
section 3), and this means that the loss of Rydberg states in the LDA is compensated by the
reduction of the ionization threshold. This shortcoming of the LDA becomes corrected in the
FAPG case, whose optical spectrum includes the effect of the Rydberg states.

In figure 4 we compare the LDA and FAPG full linear responses (with a Lorentzian
broadening of 0.2 eV) of Na+

9 and Na+
21. The positions of experimental peaks [44] are indicated

with arrows. The accumulation of strength in the UV region is smaller for the cations than
for neutral clusters because the xc potential is deeper and the overlap between the bound and
Rydberg states is smaller. For Na+

9 we obtain only one FAPG broad peak at an energy very
close to the experimental value, 2.62 eV. For Na+

21 a fine structure near the plasmon peak results
in the FAPG spectrum, as observed in the experiments [44]. This double peak is absent in
both the LDA and SIC [15] spectra, and consequently it is beyond the range of SICs in the
xc potential.

The situation is quite different for the negatively charged clusters, where the tail of the
potential is now essentially governed by the xc potential, due to the near cancellation of the
Coulomb terms. The cross section is now dominated by transitions that promote the electron
into the continuum, where it has a finite probability of leaving the cluster. In figure 5 we
can observe the large spreading of the strength of Na−

19 as compared to its isoelectronic Na20

cluster (figure 2). Note as well that the FAPG prediction for the line shape for Na−
19 is quite

different from the one corresponding to the LDA, showing the importance of correcting for
self-interaction and indicating that non-local xc effects should play an essential role whenever
the plasmon line is expected to appear near the ionization threshold. Since in the FAPG
approach the continuum is treated exactly, the linewidth of the photoabsorption cross section
is directly related to the lifetime of the surface plasmon before electron detachment which is
delayed compared to that of the neutral cluster. The spreading is also evident in the calculation
of Pacheco and Ekardt for Na−

7 and Na−
19 [15].
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Figure 4. The imaginary part of the dynamical polarizability per electron, for Na+
9 and Na+

21,
calculated with LDA and FAPG potentials. The arrows indicate the positions of the observed
peaks [44].
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Figure 5. The LDA and FAPG spectra of the Na−
19 cluster, to be compared with the isoelectronic

spectra of Na20 (figure 2) and Na+
21 (figure 4).

5. Ground-state properties and dynamical polarizabilities of NanPb clusters

In a mass-spectral study on the stability of bimetallic sodium/lead clusters produced from
the expansion of a mixed sodium/lead vapour, an intense molecular beam consisting almost
exclusively of the cluster Na6Pb was observed, under the given experimental conditions [32].
It has been shown, using first-principles molecular dynamics [33], that the strong stability
of Na6Pb comes on one hand from a highly symmetrical configuration formed by a sixfold-
coordinated lead atom inside an octahedron, with the six sodium atoms at the vertices, and on the
other hand from a closed-electronic-shell structure reminiscent of the 1s21p62s2 configuration
of ten valence electrons in an effective central potential. These circumstances do not exist
for the neighbour clusters Na5Pb and Na7Pb. The binding energy for the last atom in Na7Pb



5808 M B Torres and L C Balbás

is smaller than the typical binding energies of Na atoms in pure Na clusters, whereas for the
smaller mixed clusters the reverse is true. During the process of cluster growth from a Na-rich
vapour, it is energetically favourable for a Na atom to bind to a NanPb cluster with n < 6
instead a pure Nan cluster, but it is energetically unfavourable for a Na atom to bind to larger
mixed clusters instead of a pure Na cluster.

The stabilities of Na6Pb and other NanPb (n < 23) doped clusters have been explained [25]
by applying the SAPS (spherically averaged pseudopotential) method [30], which is quite
successful in predicting the stabilizing of alkali metal clusters by the closing of spherical
electronic shells, giving in addition the corresponding optimized skeleton of atomic cores.
For the response calculations in this section we start with the ionic geometry resulting from
the SAPS method [25] using the local atomic pseudopotentials of Fiolhais et al [31] and the
LDA-PW xc potential [26] (see [25], chapter 2, for a review). The Pb atom contributes four
valence electrons and each Na atom contributes one valence electron. An important feature
is that the electronic structure is dominated by the strong attractive Pb potential, resulting in
an ordering of electronic levels, 1s1p2s1d—that is, changing the order of the 2s and 1d levels
with respect to pure sodium clusters. Thus, electronic shell closure results for Na4Pb, Na6Pb
and Na16Pb. The trends for the stability, cohesive energies, and monomer evaporation energy
of NanPb clusters obtained in [25] within the SAPS method are the same as those resulting
from ab initio molecular dynamics calculations [33].

In figure 6 we compare our calculated LDA and FAPG spectra of Na4Pb, Na6Pb, and
Na16Pb. The results for the non-interacting particle response are indicated in figure 6 with
dotted lines. The arrows indicate the HOMO eigenvalues. A noticeable increase in the
fragmentation of the strength occurs in going from the LDA to FAPG responses, as was
discussed above for pure Na clusters.

Let us discuss first the response of the Na6Pb cluster, whose electronic density is nearly
spherically symmetric [33]. For the LDA there are simple poles at 1.39, 2.15, and 3.20 eV
corresponding to the particle–hole transitions 2s–2p, 1p–1d, and 1p–3s, respectively. Including
the electron–electron interactions, a blue-shift of the response and a broad resonance at 2.6 eV
result, although the peak structure already present in the unperturbed response is essentially
kept. To analyse what the main transitions contributing to the plasmon peak are, we followed
the procedure introduced in [43]; that is, we have made calculations of the response of Na6Pb,
each time keeping inert one of the three occupied sp levels, and comparing it with the full
response. The results show that the deeply bound 1s level has little effect on the full response,
and the 1p level is responsible for the broad resonance and for the small peak on the right. The
2s level, which is close to the theoretical ionization threshold, causes the remaining structure
of the spectrum. As is well known, a local pseudopotential works well for sodium [31]. For
lead, this is not so, but the lead atom being placed at the centre should also minimize the role
of the non-local parts. Pacheco [45] has shown the great similarity between spectra obtained
using local and non-local pseudopotentials and the small influence of the three-dimensional
effects in the response of the Na6Pb cluster.

For the ground state of Na4Pb in the SAPS model, the p–h transitions are 1p–2s, 1p–1d, and
1p–3s, lying, respectively, at 0.95, 2.08, and 2.55 eV. When we include the induced effective
potential, the result is a spectrum that is similar to those of isoelectronic pure sodium clusters
with eight valence electrons but shifted globally to higher energies. However, for the Na16Pb
case we obtain results that are completely different to those for the isoelectronic Na20 and Na+

21
clusters, despite their having the same electronic configuration, 1s21p62s21d10. The origin of
these differences is the strong Pb pseudopotential, causing the 1p and 1d levels to be more
tightly bound than in pure Na clusters. This leads also to a blue-shift of the overall spectrum
(compare the ranges of energy spanned in figures 2 and 5). On the other hand, the larger
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Figure 6. The imaginary part of the dynamical polarizability per electron (on a logarithmic scale
and in arbitrary units) for NanPb (n = 4, 6, 16). The unscreened response is given by dotted lines.
The arrows indicate the HOMO eigenvalues.

fragmentation of the FAPG spectra with respect to the LDA spectra is qualitatively similar to
the pure clusters case, and the physical origin has been discussed in section 4 above.

6. Summary and outlook

In this paper we have applied DFT to the study of ground-state properties, polarizability,
and the photoabsorption cross section for neutral and charged closed-shell sodium clusters as
well as sodium clusters doped with lead atoms. The main novel feature is that we treat the
xc effects by means of a new xc potential due to PG [18] which exhibits the correct asymptotic
behaviour. The use of this new potential in the context of TDDFT provides a simple and
convenient framework which does not require extra computational effort and yet yields results
that remedy many of the shortcomings intrinsic to the LDA. The FAPG potential of PG [18]
eschews the traditional resolution of the xc potential into exchange plus correlation, in favour
of a resolution into a FA term plus a constraint term (equation (12)). The former provides
the correct normalization of the xc hole and the correct long-range behaviour of the potential,
which leads to an increase in the number of bound states. The latter is obtained as a function



5810 M B Torres and L C Balbás

of the density by fitting to ab initio data for the atoms He to Ar following the procedure of
Zhao and co-workers [28]. For the present applications to metal clusters, we choose the value
of the FAPG potential at r = 0 to be the same as the value for the LDA-PW potential, which
we have used here for comparative purposes.

We first considered the ground state of sodium clusters in the spherical jellium model. The
HOMO eigenvalue from the FAPG calculations provides a very good account of the ionization
threshold. Other FAPG eigenvalues are closer to reported GW quasi-particles energies [40]
than those obtained from KLI or GAM potentials [23], which are considerably deeper than
the FAPG potential inside the cluster. Moreover, the FAPG approximation yields a better
description of the local field correction entering into the response function, leading to a good
account of the polarizability, both qualitative and quantitative.

As for the dynamical response properties of sodium clusters, we obtain that the Landau
damping is more noticeable in the FAPG calculation than in the LDA one, due to the larger
number of loosely bound states. In the case of Na20 and Na40 we predict accurately the position
of the surface plasmon. The observed fragmentation into two main peaks of these plasmons
is obtained in both LDA and FAPG calculations, although the underlying mechanisms are
different. The fragmentation peak in the LDA is broadened by transitions, promoting the
electron into the continuum. In contrast, the fragmentation of the plasmon obtained using
the FAPG calculation is due to particle–hole transitions in the discrete spectrum, which now
contain much more loosely bound states.

For the positively charged clusters, Na+
9 and Na+

21, the FAPG calculation provides a red-
shift of the main features of the spectra with respect to those from the LDA calculation. For
Na+

9 we obtain only one peak within both FAPG and LDA calculations, but the FAPG one is
closer to the experimental plasmon. In the Na+

21 case, only the FAPG calculation reproduces
the splitting of the plasmon into two peaks seen in experiments [44]; this has not been obtained
using other non-local functionals such as the WDA-PB [12] and SIC [15] forms.

Moreover, we are now able to provide non-trivial predictions for the photoabsorption
cross sections of negatively charged clusters. Because the surface plasmon is embedded in a
continuum of single-particle states to which it couples within the FAPG approach, we were
able to single out the contribution to the total linewidth arising from the probability for electron
detachment. This opens the possibility to study previously inaccessible behaviour (at the level
of LDA), such as the dynamical response of anions and anionic clusters.

To finish off, in section 5 we studied the linear response of sodium clusters doped with lead
atoms and with the ionic structure described by means of the SAPS model [25, 30]. We have
calculated and analysed the dynamical response of Na6Pb within the LDA, obtaining that the
1p level is responsible of the broad resonance near the ionization threshold, whereas the deeply
bound 1s level has little effect on the full response. The LDA Na4Pb spectra are similar to those
of the isoelectronic pure sodium clusters Na8 apart from a global blue-shift due to the strong
Pb pseudopotential. Surprisingly, the LDA response of Na16Pb is qualitatively different from
that for the isoelectronic Na20 cluster, although one should expect a closer correspondence than
in the case of eight-valence-electron clusters. Using the PG potential, a noticeable increase
in the Landau damping is obtained, as in the case of pure sodium clusters, due to the correct
long-range tail.
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